
PETRI NET BASED SUPERVISORY CONTROL OF FLEXIBLE
BATCH PLANTS

G. Mušič and D. Matko

Faculty of Electrical Engineering, University of Ljubljana, Slovenia.
E-mail: gasper.music@fe.uni-lj.si

Abstract: The application of supervisory control concepts in the control of batch process
plants is investigated in the paper. Supervisory control issues in flexible batch plants include
co-ordination, resource allocation and process management. The paper utilises the Petri net
based supervisory control framework to develop appropriate solutions. A straightforward
approach of translating developed Petri net models to industrial implementation by sequential
function charts is presented. The described concepts are illustrated by a simple resource
allocation problem in a batch process cell.

Keywords: batch processing, Petri nets, supervisory control

1. INTRODUCTION

Flexible batch plants are gaining importance in pro-
cess industry. In comparison to classical process plants
where main stress is placed on continuous control,
the batch plants involve many discrete control func-
tions. Because of the complexity of such plants the
local level control is generally inadequate. Addition
of supervisory control functions is required in order to
maintain the desired system performance. These func-
tions introduce several classical discrete manufactur-
ing system design issues into the design and analysis
of the batch production plants.

Basic functions of the supervisory level include co-
ordination of the low level control activities, schedul-
ing of subprocess operations, various emergency sce-
narios, start-up and shutdown sequences. The imple-
mentation of such functions can significantly increase
reliability, availability and flexibility of production
processes.

Most of the current research in the area of supervi-
sory control is focused on the idea of synthesis of
the supervisor for a given discrete event model of the
plant. The plant usually contains several control units
(programmable logic controllers or closed loop con-
trollers) which are already incorporated in the plant
model. The aim of such a supervisor is to force the

plant model to have desired properties, which corre-
spond to additional system specifications.

The theory of supervisory control was pioneered by
the work of Ramadge and Wonham (1989). In their
work the term supervisor is used in the sense of a
discrete event controller, which does not uniquely
define the next control input but merely defines a
subset of allowable control inputs. A typical control
goal is to make sure that the plant never reaches some
specific states.

The systematic procedure of deriving an appropriate
process supervisor starts with deriving a model of the
plant, continues with model validation and synthesis
of a supervisor that fulfils the given set of specifi-
cations. In most cases, a formal verification of the
obtained solution has to be performed before the su-
pervisor is actually implemented.

The paper concentrates on Petri net based supervi-
sory control synthesis for the purpose of resource
allocation in flexible batch plants. Formal synthesis
methods are applied, which ensure that the derived
system maintains certain properties. A straightforward
approach to the industrial implementation of the de-
veloped solutions is suggested by conversion of the
derived Petri net model of the supervisor into the se-
quential function chart (SFC) representation. The ap-

proach is illustrated by an example of a batch process
cell. The paper is structured as follows. The modelling
of the plant and the supervisor by Petri nets and SFCs
is discussed in Section 2. The supervisory synthesis
method based on place invariants is briefly reviewed
and illustrated by a simple example in Section 3. The
implementation issues are discussed in Section 4.

2. PETRI NETS AND SFC

A supervisory system is predominantly discrete re-
gardless of the type of the process being controlled.
Its design requires a discrete event view of the system.
Various discrete event modelling techniques can be
used to obtain the model of a plant and a supervisor.
No general agreement has been achieved yet upon a
modelling framework that would best suit the needs
of analysis and design of supervisory systems, never-
theless, discrete transition system descriptions such as
finite automata (Hopcroft and Ullman, 1979) or Petri
nets (Murata, 1989) are used most commonly.

The finite automata representation of the supervisors
and plants is used in most of the early works on super-
visory control. Applied synthesis methods are based
on searching over the state space of the automata.
One of the main problems of the application of the
developed supervisory framework to real industrial
processes is the state explosion problem. Petri nets,
on the other hand, enable the modeller to include
additional structural information into the model. The
state of the system is distributed over the places of
the net. The Petri net based synthesis methods tend
to exploit the net structure thus reducing the need to
search over the whole state space. Some recent con-
tributions on the Petri net based supervisory control
can be found in (Giua and DiCesare, 1992; Krogh
and Holloway, 1991; Moody and Antsaklis, 1996; Ya-
malidou et. al., 1996; Zhou et. al., 1992). The main
problem of the application of the developed methods
is that they are generally limited to a particular type
of Petri net models and allow only certain types of
system specifications. Petri net models, however, are
relatively easily understood by non-experts and yield
the possibility of a more intuitive design based on the
knowledge about the process and not purely on the
rigid theoretical background. This can be helpful in
cases that extend beyond the limitations of a particular
synthesis technique.

Perhaps the most significant advantage of the Petri net
representation is the straightforward path from the de-
veloped models to the industrial implementation. The
discrete control logic is most often implemented by
programmable logic controllers. The recent IEC stan-
dard on programming languages of industrial logic
controllers (IEC, 1992) promotes the use of Sequential
Function Chart (SFC) representation of the control
logic. SFC (also referred as Grafcet) inherited many
of its features from the theory of Petri nets. More

precisely, a safe interpreted Petri net can be defined
such that its input-output behaviour is the same as
the input-output behaviour of the SFC (David and
Alla, 1994; David, 1995).

A place in such a Petri net corresponds to a step in
the SFC. Transitions and directed links have the same
meaning in SFC as they have in Petri net. If an in-
put/output interpretation is added to the transitions and
places of the Petri net, we can obtain an equivalent
SFC model. There are however two basic differences
between an interpreted Petri net and a SFC. The first
difference between Petri nets and SFCs is that the
marking of a SFC is Boolean (step is active or inac-
tive) while the marking of a place in a Petri net can be
any positive integer. For that reason the conversion of
a Petri net to a SFC is only possible when the net is
safe (i.e., for any reachable marking, the marking of
every place is less than or equal to one).

The second difference between Petri nets and SFCs
is that the firing rule of a SFC is different from a
Petri net when there is a conflict. A conflict in a Petri
net describes the situation when some transitions are
enabled by the marking of the same place. This leads
to a non-deterministic behaviour since there is no rule
to choose which of them will be fired. When such
situation emerges in a SFC the transitions are fired
according to their priority to ensure the deterministic
behaviour or, when no priorities are defined, all tran-
sitions fire simultaneously. Now, if a Petri net is such
that any pair of transitions in conflict has receptivities,
which can not be true at the same time, the behaviour
of the net is deterministic. If such a Petri net is also
safe, it is equivalent to a SFC (David, 1995).

Its strong relation to Petri net theory enables a SFC
to be directly redrawn from a Petri net model and
the classical properties of Petri nets, such as marking
invariants, can be applied also to SFCs. In this way,
the supervisor can be derived within the Petri net
supervisory control framework and the derived model
can then be easily transformed into a logic controller
program.

3. SUPERVISORY CONTROL SYNTHESIS

One way of including supervisory mechanisms is the
mutual exclusion concept introduced in (Zhou and
DiCesare, 1991; Zhou, 1992). Two concepts, parallel
and sequential mutual exclusions are defined and used
to synthesise bounded, live and reversible Petri net. In
this classical mutual exclusion concept, all transitions
are assumed to be controllable, i.e., may be prevented
from firing by a supervisor. This assumption how-
ever, is rather unrealistic. Therefore in the traditional
supervisory control framework (Ramadge and Won-
ham, 1989) the complexity of enforcing desired prop-
erties is enhanced by the presence of uncontrollable
transitions. Different approaches based on Petri net

models and which also consider the problem of uncon-
trollable transitions are given in (Giua, 1992; Krogh,
1991; Moody, 1996; Yamalidou, 1996). The last ap-
proach (Moody, 1996; Yamalidou, 1996) is based on
place invariants and is particularly interesting, because
the resulting supervisory mechanism is computed very
easily. It is briefly summarised here and illustrated by
a batch process cell example.

By the method of place invariants it is possible to en-
force a set of nc constraints on the plant state mp. The
plant state is represented by a m�1 marking vector of
non-negative integers, where each vector component
is equal to the marking of the corresponding place in
the Petri net model of the plant. Constraints are written
in the form

Lmp � b (1)

where L is a nc �m integer matrix and b a nc � 1
integer vector (Yamalidou, 1996). The inequality (1) is
read with respect to each element on the correspond-
ing left and right hand sides of the inequality. It is
shown in (Yamalidou, 1996) that if the initial marking
does not violate the given set of constraints, (1) can be
enforced by a supervisor with the incidence matrix

Dc ��LDp (2)

where Dp is the m� n incidence matrix of the plant.
The initial marking of the controller is computed by

mc0 � b�Lmp0 (3)

where mp0 is the m� 1 initial plant marking vector
of non-negative integers. The supervisor consists of
nc places that are linked to the existing transitions of
the plant. With the addition of supervisor places the
overall system is given by

Ds �

�
Dp

Dc

�
ms �

�
mp

mc

�
(4)

and every single constraint is transformed to a marking
invariant that corresponds to a place invariant (David,
1994) of the supervised system.

Generally, some transitions are always found uncon-
trollable. These are, e.g., all transitions that represent
sensor readings as well as come control actions that
must not be prevented due to required process opera-
tion or safety reasons.

Let Duc represent the columns in the process incidence
matrix that correspond to uncontrollable transitions.
Clearly, the firing of an uncontrollable transition must
not depend on the marking of any place that belongs to
the supervisor. The supervisor matrix Dc must there-
fore contain no negative elements in the columns that
correspond to uncontrollable transitions (a supervisor
designed by the described method contains no self
loops, so this condition is sufficient). This is true when
the matrix LDuc contains no positive elements as these
will appear as negative elements in Dc calculated by
(2). The set of constraints must therefore satisfy

LDuc � 0 (5)

If this is not the case, matrix L (and eventually vector
b) must be transformed so that (5) will be satisfied
while the supervisor designed to fulfil the new set
of constraints will also maintain the original set of
constraints. An algorithm that performs an appropriate
transformation of L and b is given in (Moody, 1996).

The described concept can be effectively used to intro-
duce resource allocation strategies and co-ordination
mechanisms in the areas such as batch system control.

3.1 Batch process cell example

Consider a simple example from the area of batch
systems. Part of a batch process cell is shown in Fig. 1.
Two mixing tanks share the same supply tank. Mixing
tanks are repeatedly filled and discharged with the
restriction that only one tank can be filled at a time.

� � � � � � � � � � 	

 � � �
 �

� � � 	
� �

� �

� � � �

� � � �

� � � �

� � � �

Fig. 1. Part of a batch process cell

First the Petri net models of the two individual process
lines are derived. A process line is defined by the
ISA SP88 standard as the set of equipment used to
produce one batch. Lines can be configured to com-
bine the equipment differently for different products
or batches. In the given case, the two lines consist
of a supply tank and a mixing tank each. The two
models are identical and a corresponding Petri net
is depicted in Fig. 2a. The models are combined by
merging the places that correspond to the same status
or operation. In the example these are the places pa3

and pb3 that both correspond to the outlet valve of the
supply tank. Letter ’a’ or ’b’ that is introduced into
place/transition subscript denotes to which tank the
corresponding place/transition belongs. Fig. 2b shows
the Petri net, obtained by merging the two places.

The classical bottom-up approach to Petri net mod-
elling provides special rules, which define places that
are allowed to be merged. This ensures that important
properties of the subnets are preserved in the final net.
These rules were not taken into account in the previous
example and such merging does not guarantee that any
of the important properties is preserved. However, this

� �

� �

� �

� �

� �

� �

� �

� �

� �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� �

� 	 �

� 	 �

� 	 �

� 	 �

� 	 �

� 	 �

� 	 �

� 	 �

� � � �

	
 � � �
 � �
 � � � �

� �
 �
 � � �

� �
 �
 � � �

� �
 �
 � �

	
 � � �
 � �

� 	 � � �

Fig. 2. Petri net model

concept enables much greater flexibility in modelling
individual units and better suits the distributed system
architecture. The problems that arise can be overcome
by the synthesis of a supervisor that prevents any
undesired behaviour of the plant. Such a supervisor
corresponds to a co-ordination level required when
merging several locally controlled subprocesses.

Consider the above example with the current marking
of Petri net as shown in Fig. 2b. Obviously, if transi-
tions ta1 and tb1 fire, the place p3 contains two tokens
and is therefore not safe. The safeness of the place
p3 is required, because it represents the operation of
opening the outgoing valve of the supply tank and
this can not be opened twice at the same time. The
described situation is a malfunction of the system. To
prevent this the supervisor has to be designed that will
co-ordinate the two mixers in such a way that only one
will be filled at a time. This requirement is written as

µ3 � 1

where µ3 is the marking vector component that corre-
sponds to the place p3. The requirement can be easily
transformed to the form (1). With the marking vector
being

mp � �µa1�µa2�µ3�µa4�µa5�µb1�µb2�µb4�µb5�
T

we have

mp0 � �1�0�0�0�0�1�0�0�0�T

L � �0�0�1�0�0�0�0�0�0�

and b � 1. The supervisor can be computed by (2) and
(3). Given Dp as

Dp �

�
�������������

�1 0 0 1 0 0 0 0
1 �1 0 0 0 0 0 0
1 �1 0 0 1 �1 0 0
0 1 �1 0 0 0 0 0
0 0 1 �1 0 0 0 0
0 0 0 0 �1 0 0 1
0 0 0 0 1 �1 0 0
0 0 0 0 0 1 �1 0
0 0 0 0 0 0 1 �1

�
�������������

we obtain the supervisor

Dc �
	
�1 1 0 0 �1 1 0 0

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� �

� 	 �

� 	 �

� 	 �

� 	 �

� 	 �

� 	 �

� 	 �

� 	 �

�
 �

Fig. 3. Petri net model of the supervised system

mc0 � 1

The supervisor consists of a single place that is con-
nected to the plant Petri net as shown in Fig. 3. We
assume transitions ta1 and tb1 are controllable.

The marking invariant that is enforced by the supervi-
sor is:

µ3 �µc1 � 1

It can be shown that markings of all other places of the
resulting net are all included by at least one marking
invariant that has a sum of tokens equal to one. Such a
set of marking invariants is, for example

µa1 �µa2�µa4 �µa5 � 1

µb1 �µb2�µb4 �µb5 � 1

The net is therefore proven to be safe.

4. IMPLEMENTATION

To bring the simulation model closer to industrial
implementation the discrete model is transformed to
SFCs. The single Petri net from Fig. 3 is decomposed
into several charts that correspond to separate logic
controllers. We assume each process line is controlled
by its own controller and supervisory part resides
in another controller. The net decomposition is illus-
trated by Fig. 4.

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

�
 �

� � � � �
 � � � � � � �
 � �� � � � � � �
 � �

 � � � � � � � �
 � � �

� � � �
 � � � � �

Fig. 4. Conversion of Petri net model to individual
SFC modules

The interaction among different SFC modules is per-
formed through synchronised transitions. These tran-
sitions have identical enabling conditions and further-
more, they are only enabled when all the preceding

� � �

� � �

� � �

� � �

� � �

� � � �

�
 � �

�
 � �

�
 � �

�
 � �

�
 � �

�
 � �

�
 �

� � �

� � �

� � �

� � �

� � �

� � � � � �

� � � �

� � � �

� � � �

� � � �

� � � �

� 	 � �
 � �
 � � 	 � �
 � �
 �� � �
 	 � � � � 	

� � � � � � � � � � � � �

� � � � �

Fig. 5. Synchronisation through communication links

steps to any of the participating transitions are active.
It is relatively difficult to achieve such a synchronisa-
tion among different logic controllers in practical im-
plementation. Because of the communication delays
it can not be guaranteed that transitions in different
controllers fire simultaneously. This can be solved by
defining the firing order of the transitions. In the cases
when the two controllers share the same resource and
the supervisor performs the resource allocation such
as indicated in Fig. 4 the transition that books the
resource must be fired in the supervisor first and only
then in the local controller. In the opposite case the
communication delay would allow a double booking
of the shared resource by the two controllers.

A Petri net model of such a decomposed model is
shown in Fig. 5. An appropriate ordering of transi-
tion firings is achieved through communication places
that represent network link variables on a PLC net-
work. Consider the situation when process A wishes
to use the shared resource. The place pLA1 signals the
supervisor that transition tA1 is enabled by the local
controller. The supervisor books the shared resource
to process A by firing transition tCA1. The place pLA2

becomes marked and only then the transition tA1 can
fire and process A starts utilising the resource. After
the shared resource is released and transition tA2 fires,
place pLA3 becomes marked which enables the tran-
sition tCA2. After firing of tCA2 the shared resource is
again available to both processes.

The controlled transitions tA1 and tB1 in Fig. 5 both
only have one input place. If the set of input places of
a controlled transition consists of more than one place,
a communication place like pLA1 is associated with
each input place and linked to its input transition(s).
All communication places are then linked to the cor-
responding transition in the supervisor (tCA1 in Fig. 5).

To implement the described allocation scheme in pro-
grammable logic controllers the Petri net model is
converted to three SFCs as indicated in Fig. 4. This
is detailed in Fig. 6 with receptivities of the SFC
transitions that participate in booking of a resource.
The original receptivity (before the addition of the

� � � � �
 � � � � � � �
 � �� � � � � � �
 � �

�

�

�

�

 !

"

#

$

% � �

% � �

% � �

% � �

% �

% ! �

% " �

% # �

& � ' ' � & � & " ' " & " & � & " ' !

' � ' � ' " ' #

Fig. 6. Receptivities in SFC modules

supervisor) of transition (i) is denoted by Ri. We will
denote the receptivity of a transition after the addition
of the supervisor by R�

i. Xi is a Boolean variable that
is 1 when the step i is active. In the given example
the transition (3) is related to transition (1), transition
(4) to transition (2), transition (5) to transition (7)
and transition (6) to transition (8). The principle of
operation follows the one presented above with the
Petri net model. If we take the same situation as above,
i.e., process A requires the shared resource in step 2,
the receptivity of transition (3) assures that (3) is fired
before (2), which disables (5) and consequently (7). In
this way the resource is booked to process A, and (1)
is allowed to fire. The variables R7 and R1 are included
in R�

3 and R�
5 to avoid conflict in the supervisory part of

the SFC. Transition (4) releases the resource and can
be fired as soon as step 2 is no longer active, therefore
X2 is included in R�

4. X1 is added to R�
4 to prevent

the release of the shared resource before X2 is actually
activated.

The described concept can be easily adapted to more
general cases. If we consider the cases where a shared
resource is used in several consequent steps and there
is no branching between the transitions that book and
release the shared resource in the process SFC, the
situation is very similar to the one shown in Fig. 6.
The supervisory part consists of several SFCs, one
per each resource. Every supervisory SFC consists of
n� 1 steps and 2n transitions where n is the number
of processes that share the resource. n is equal to the
number of negative elements in the corresponding row
of the matrix Dc. Let tCI j denote the transition in the
supervisory SFC that books the resource to the process
j, and tCO j the transition that releases the resource.
The transition in the process j SFC that starts the
actual use of the resource is denoted by tPI j and the
transition that ends the resource utilisation is denoted
by tPO j. Let XPIk denote the state of the k-th input step
of the transition tPI j and mj the number of input steps
to tPI j. XC j is the state of the step in the supervisory
SFC that books the resource and XP jk is the state of
the k-th of the l steps that use the resource in process
j. The receptivities of the transitions tCI j, tPI j and tCO j

are then given as follows:

R�
CI j � �

n

∏
k�1
k �� j

RPIk�RPI j�
mj

∏
k�1

XPIk� (6)

R�
PI j � RPI jXC j (7)

R�
CO j � XPI1�

l

∏
k�1

XP jk� (8)

Note that any of the input steps of transition tPI j could
be placed instead of XPI1 in (8) since transition can not
fire until all of the input steps are active.

In this way the supervisory synthesis method based
on place invariants can be directly applied to the SFC
representation of control sequences.

5. CONCLUSIONS

It has been shown how the Petri net based supervisory
control can be used in solving problems of resource al-
location that appear in flexible batch plants. The super-
visory control method based on place invariants has
been illustrated and the relation between derived Petri
net solutions and sequential function chart representa-
tion of control logic has been investigated. A method-
ology is proposed, which enables a direct translation
of resulting Petri net models to decomposed SFC so-
lution in a distributed environment. An application of
the proposed method to a laboratory scale modular
production system is planned for the future work.

6. REFERENCES

David, R. and Alla, H. (1994). Petri Nets for Modeling
of Dynamic Systems - A Survey. Automatica, 30
(1994), pp. 175–202.

David, R. (1995). Grafcet: A Powerful Tool for Spec-
ification of Logic Controllers. IEEE Trans. on
Control Systems Technology, 3 (1995), pp. 253–
268.

Giua, A. and DiCesare, F. (1992). Generalized mu-
tual exclusion constraints on nets with uncontrol-
lable transitions. In: Proc. 1992 IEEE Int. Conf.
on Systems, Man, and Cybernetics (Chicago, Illi-
nois), pp. 974–979.

Hopcroft, J. E. and Ullman, J. D. (1979). Introduction
to Automata Theory, Languages, and Computa-
tion. Addison-Wesley, Reading, 1979.

IEC, International Electrotechnical Com-
mission (1992). Programmable Controllers - Part
3: Programming Languages, publication 1131.3
(1992).

Krogh, B. H. and Holloway, L. E. (1991). Synthesis
of feedback logic for discrete manufacturing sys-
tems. Automatica, 27 (1991), pp. 641–651.

Moody, J. O. and Antsaklis, P. J. (1996). Super-
visory Control of Petri Nets with Uncontrol-
lable/Unobservable Transitions. Tech. Rep. ISIS-
96-004, University of Notre Dame, 1996.

Murata, T. (1989). Petri Nets: Properties, Analysis and
Applications. Proc. IEEE, 77 (1989), pp. 541–
580.

Ramadge, P. J. G. and Wonham, W. M. (1989). The
Control of Discrete Event Systems. Proc. IEEE,
77 (1989), pp. 81–97.

Yamalidou, K., Moody, J., Lemmon, M., and Antsak-
lis, P. (1996). Feedback Control of Petri Nets
Based on Place Invariants. Automatica, 32
(1996), pp. 15–28.

Zhou, M. C. and DiCesare, F. (1991). Parallel and Se-
quential Mutual Exclusions for Petri Net Model-
ing of Manufacturing Systems with Shared Re-
sources. IEEE Trans. on Robotics and Automa-
tion, 7 (1991), pp. 515–527.

Zhou, M. C., DiCesare, F., and Rudolph, D. L. (1992).
Design and Implementation of a Petri Net Based
Supervisor for a Flexible Manufacturing System.
Automatica, 28 (1992), pp. 1199–1208.

	Source: Preprints of the 8th IFAC/IFORS/IMACS/IFIP Symposium on Large Scale Systems, Rio Patras, Greece, Vol. 2, pp. 989-994, 1998.

